Step of Proof: member_nth_tl
11,40
postcript
pdf
Inference at
*
2
1
1
I
of proof for Lemma
member
nth
tl
:
.....equality..... NILNIL
1.
T
: Type
2.
n
:
3. 0 <
n
4.
x
:
T
,
L
:(
T
List). (
x
nth_tl(
n
- 1;
L
))
(
x
L
)
5.
T
6.
T
List
nth_tl(
n
;[]) = []
latex
by Assert
n
:
. nth_tl(
n
;[]) = []
latex
1
: .....assertion..... NILNIL
1:
n
:
. nth_tl(
n
;[]) = []
2
:
2:
7.
n
:
. nth_tl(
n
;[]) = []
2:
nth_tl(
n
;[]) = []
.
Definitions
x
:
A
.
B
(
x
)
,
,
s
=
t
,
type
List
,
nth_tl(
n
;
as
)
,
[]
origin